# A Freudenthal-Tits Supermagic Square 

Alberto Elduque<br>Universidad de Zaragoza

October 19, 2012
Universiteit Gent

Freudenthal-Tits Magic Square

A supermagic rectangle

A supermagic square

Some conclusions

Freudenthal-Tits Magic Square

## A supermagic rectangle

A supermagic square

Some conclusions

## Exceptional Lie algebras

## Exceptional Lie algebras

$G_{2}, \quad F_{4}, \quad E_{6}, \quad E_{7}, \quad E_{8}$

## Exceptional Lie algebras

$$
G_{2}, \quad F_{4}, \quad E_{6}, \quad E_{7}, \quad E_{8}
$$

$$
\begin{aligned}
& G_{2}=\mathfrak{d e r} \mathbb{O} \\
& F_{4}=\mathfrak{d e r} H_{3}(\mathbb{O}) \\
& E_{6}=\mathfrak{s t r}_{0} H_{3}(\mathbb{O})
\end{aligned}
$$

(Cartan 1914)
(Chevalley-Schafer 1950)

Tits construction (1966)

## Tits construction (1966)

- C a Hurwitz algebra (unital composition algebra),
- J a central simple Jordan algebra of degree 3,


## Tits construction (1966)

- C a Hurwitz algebra (unital composition algebra),
- J a central simple Jordan algebra of degree 3, then

$$
\mathcal{T}(C, J)=\mathfrak{d e r} C \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J
$$

is a Lie algebra (char $\neq 2,3$ ) under a suitable Lie bracket:
$[a \otimes x, b \otimes y]=\frac{1}{3} \operatorname{tr}(x y) D_{a, b}+\left([a, b] \otimes\left(x y-\frac{1}{3} \operatorname{tr}(x y) 1\right)\right)+2 t(a b) d_{x, y}$.

## Freudenthal-Tits Magic Square

| $\mathcal{T}(C, J)$ | $H_{3}(k)$ | $H_{3}(k \times k)$ | $H_{3}\left(\mathrm{Mat}_{2}(k)\right)$ | $H_{3}(C(k))$ |
| :---: | :---: | :---: | :---: | :---: |
| $k$ | $A_{1}$ | $A_{2}$ | $C_{3}$ | $F_{4}$ |
| $k \times k$ | $A_{2}$ | $A_{2} \oplus A_{2}$ | $A_{5}$ | $E_{6}$ |
| $\operatorname{Mat}_{2}(k)$ | $C_{3}$ | $A_{5}$ | $D_{6}$ | $E_{7}$ |
| $C(k)$ | $F_{4}$ | $E_{6}$ | $E_{7}$ | $E_{8}$ |

## Tits construction rearranged

## Tits construction rearranged

$$
\begin{aligned}
& J=H_{3}\left(C^{\prime}\right) \simeq k^{3} \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C^{\prime}\right)\right), \\
& J_{0} \simeq k^{2} \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C^{\prime}\right)\right), \\
& \mathfrak{d e r} J \simeq \mathfrak{t r i}\left(C^{\prime}\right) \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C^{\prime}\right)\right),
\end{aligned}
$$

## Tits construction rearranged

$$
\begin{aligned}
& J=H_{3}\left(C^{\prime}\right) \simeq k^{3} \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C^{\prime}\right)\right), \\
& J_{0} \simeq k^{2} \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C^{\prime}\right)\right), \\
& \mathfrak{d e r} J \simeq \mathfrak{t r i}\left(C^{\prime}\right) \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C^{\prime}\right)\right),
\end{aligned}
$$

$\mathcal{T}(C, J)=\mathfrak{d e r} C \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J$
$\simeq \mathfrak{d e r} C \oplus\left(C_{0} \otimes k^{2}\right) \oplus\left(\oplus_{i=0}^{2} C_{0} \otimes \iota_{i}\left(C^{\prime}\right)\right) \oplus\left(\mathfrak{t r i}\left(C^{\prime}\right) \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C^{\prime}\right)\right)\right)$
$\simeq\left(\mathfrak{t r i}(C) \oplus \operatorname{tri}\left(C^{\prime}\right)\right) \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C \otimes C^{\prime}\right)\right)$

## Tits construction rearranged

$$
\begin{aligned}
& J=H_{3}\left(C^{\prime}\right) \simeq k^{3} \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C^{\prime}\right)\right), \\
& J_{0} \simeq k^{2} \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C^{\prime}\right)\right), \\
& \mathfrak{d e r} J \simeq \mathfrak{t r i}\left(C^{\prime}\right) \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C^{\prime}\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{T}(C, J)=\mathfrak{d e r} C \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J \\
& \quad \simeq \mathfrak{d e r} C \oplus\left(C_{0} \otimes k^{2}\right) \oplus\left(\oplus_{i=0}^{2} C_{0} \otimes \iota_{i}\left(C^{\prime}\right)\right) \oplus\left(\mathfrak{t r i}\left(C^{\prime}\right) \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C^{\prime}\right)\right)\right) \\
& \quad \simeq\left(\mathfrak{t r i}(C) \oplus \mathfrak{t r i}\left(C^{\prime}\right)\right) \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C \otimes C^{\prime}\right)\right)
\end{aligned}
$$

$$
\mathfrak{t r i}(C)=\left\{\left(d_{0}, d_{1}, d_{2}\right) \in \mathfrak{s o}(C)^{3}: \overline{d_{0}(\overline{x y})}=d_{2}(x) y+x d_{1}(y) \forall x, y \in C\right\}
$$ is the triality Lie algebra of $C$.

## Tits construction rearranged

## Tits construction rearranged

The product in

$$
\mathfrak{g}\left(C, C^{\prime}\right)=\left(\operatorname{tri}(C) \oplus \operatorname{tri}\left(C^{\prime}\right)\right) \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C \otimes C^{\prime}\right)\right),
$$

is given by:

## Tits construction rearranged

The product in

$$
\mathfrak{g}\left(C, C^{\prime}\right)=\left(\mathfrak{t r i}(C) \oplus \mathfrak{t r i}\left(C^{\prime}\right)\right) \oplus\left(\oplus_{i=0}^{2} \iota_{i}\left(C \otimes C^{\prime}\right)\right)
$$

is given by:

- $\mathfrak{t r i}(C) \oplus \mathfrak{t r i}\left(C^{\prime}\right)$ is a Lie subalgebra of $\mathfrak{g}\left(C, C^{\prime}\right)$,
- $\left[\left(d_{0}, d_{1}, d_{2}\right), \iota_{i}\left(x \otimes x^{\prime}\right)\right]=\iota_{i}\left(d_{i}(x) \otimes x^{\prime}\right)$,
- $\left[\left(d_{0}^{\prime}, d_{1}^{\prime}, d_{2}^{\prime}\right), \iota_{i}\left(x \otimes x^{\prime}\right)\right]=\iota_{i}\left(x \otimes d_{i}^{\prime}\left(x^{\prime}\right)\right)$,
- $\left[\iota_{i}\left(x \otimes x^{\prime}\right), \iota_{i+1}\left(y \otimes y^{\prime}\right)\right]=\iota_{i+2}\left((\bar{x} \bar{y}) \otimes\left(\bar{x}^{\prime} \bar{y}^{\prime}\right)\right)$ (indices modulo 3),
- $\left[\iota_{i}\left(x \otimes x^{\prime}\right), \iota_{i}\left(y \otimes y^{\prime}\right)\right]=q^{\prime}\left(x^{\prime}, y^{\prime}\right) \theta^{i}\left(t_{x, y}\right)+q(x, y) \theta^{\prime i}\left(t_{x^{\prime}, y^{\prime}}^{\prime}\right)$,
where

$$
t_{x, y}=\left(q(x, .) y-q(y, .) x, \frac{1}{2} q(x, y) 1-R_{\bar{x}} R_{y}, \frac{1}{2} q(x, y) 1-L_{\bar{x}} L_{y}\right)
$$

(Vinberg, Allison-Faulkner, Barton-Sudbery, Landsberg-Manivel)

## Freudenthal-Tits Magic Square (char 3)

## Freudenthal-Tits Magic Square (char 3)

This more symmetric construction is valid too in characteristic 3 :

## Freudenthal-Tits Magic Square (char 3)

This more symmetric construction is valid too in characteristic 3 :

|  | $\operatorname{dim} C^{\prime}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathfrak{g}\left(C, C^{\prime}\right)$ | 1 | 2 | 4 | 8 |
| 1 | $A_{1}$ | $\tilde{A}_{2}$ | $C_{3}$ | $F_{4}$ |  |
| $\operatorname{dim} C$ | 2 | $\tilde{A}_{2}$ | $\tilde{A}_{2} \oplus \tilde{A}_{2}$ | $\tilde{A}_{5}$ | $\tilde{E}_{6}$ |
|  | 4 | $C_{3}$ | $\tilde{A}_{5}$ | $D_{6}$ | $E_{7}$ |
|  | 8 | $F_{4}$ | $\tilde{E}_{6}$ | $E_{7}$ | $E_{8}$ |

## Freudenthal-Tits Magic Square (char 3)

This more symmetric construction is valid too in characteristic 3 :

|  | $\operatorname{dim} C^{\prime}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathfrak{g}\left(C, C^{\prime}\right)$ | 1 | 2 | 4 | 8 |
| 1 | $A_{1}$ | $\tilde{A}_{2}$ | $C_{3}$ | $F_{4}$ |  |
| $\operatorname{dim} C$ | 2 | $\tilde{A}_{2}$ | $\tilde{A}_{2} \oplus \tilde{A}_{2}$ | $\tilde{A}_{5}$ | $\tilde{E}_{6}$ |
|  | 4 | $C_{3}$ | $\tilde{A}_{5}$ | $D_{6}$ | $E_{7}$ |
|  | 8 | $F_{4}$ | $\tilde{E}_{6}$ | $E_{7}$ | $E_{8}$ |

- $\tilde{A}_{2}$ denotes a form of $\mathfrak{p g l}_{3}$, so $\left[\tilde{A}_{2}, \tilde{A}_{2}\right]$ is a form of $\mathfrak{p s l}_{3}$.
- $\tilde{A}_{5}$ denotes a form of $\mathfrak{p g l} 6$, so $\left[\tilde{A}_{5}, \tilde{A}_{5}\right]$ is a form of $\mathfrak{p s l}_{6}$.
- $\tilde{E}_{6}$ is not simple, but $\left[\tilde{E}_{6}, \tilde{E}_{6}\right]$ is a codimension 1 simple ideal.


## Freudenthal-Tits Magic Square

A supermagic rectangle

A supermagic square

Some conclusions

A look at the rows of Tits construction

## A look at the rows of Tits construction

$$
\mathcal{T}(C, J)=\mathfrak{d e r} C \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J
$$

( $C$ a composition algebra, $J$ a suitable Jordan algebra.)

## A look at the rows of Tits construction

## $$
\mathcal{T}(C, J)=\mathfrak{d e r} C \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J
$$

( $C$ a composition algebra, $J$ a suitable Jordan algebra.)
First row $\quad \operatorname{dim} C=1, \quad \mathcal{T}(C, J)=\mathfrak{d e r} J$.

## A look at the rows of Tits construction

## $$
\mathcal{T}(C, J)=\mathfrak{d e r} C \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J
$$

( $C$ a composition algebra, $J$ a suitable Jordan algebra.)
First row $\quad \operatorname{dim} C=1, \quad \mathcal{T}(C, J)=\mathfrak{d e r} J$.
Second row $\quad \operatorname{dim} C=2, \quad \mathcal{T}(C, J) \simeq J_{0} \oplus \mathfrak{d e r} J \simeq \mathfrak{s t r}_{0}(J)$.

## A look at the rows of Tits construction

$$
\mathcal{T}(C, J)=\mathfrak{d e r} C \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J
$$

( $C$ a composition algebra, $J$ a suitable Jordan algebra.)
First row $\quad \operatorname{dim} C=1, \quad \mathcal{T}(C, J)=\mathfrak{d e r} J$.
Second row $\quad \operatorname{dim} C=2, \quad \mathcal{T}(C, J) \simeq J_{0} \oplus \mathfrak{d e r} J \simeq \mathfrak{s t r}_{0}(J)$.
Third row $\operatorname{dim} C=4$, so $C=Q$ is a quaternion algebra and

$$
\begin{aligned}
\mathcal{T}(C, J) & =\operatorname{ad}_{Q_{0}} \oplus\left(Q_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J \\
& \simeq\left(Q_{0} \otimes J\right) \oplus \mathfrak{d e r} J .
\end{aligned}
$$

(This is Tits version (1962) of the
Tits-Kantor-Koecher construction $\mathcal{T K} \mathcal{K}(J))$

## A look at the rows of Tits construction

$$
\mathcal{T}(C, J)=\mathfrak{d e r} C \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J
$$

( $C$ a composition algebra, $J$ a suitable Jordan algebra.)
First row $\quad \operatorname{dim} C=1, \quad \mathcal{T}(C, J)=\mathfrak{d e r} J$.
Second row $\quad \operatorname{dim} C=2, \quad \mathcal{T}(C, J) \simeq J_{0} \oplus \mathfrak{d e r} J \simeq \mathfrak{s t r}_{0}(J)$.
Third row $\operatorname{dim} C=4$, so $C=Q$ is a quaternion algebra and

$$
\begin{aligned}
\mathcal{T}(C, J) & =\operatorname{ad}_{Q_{0}} \oplus\left(Q_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J \\
& \simeq\left(Q_{0} \otimes J\right) \oplus \mathfrak{d e r} J .
\end{aligned}
$$

(This is Tits version (1962) of the
Tits-Kantor-Koecher construction $\mathcal{T K} \mathcal{K}(J))$

## A look at the rows of Tits construction

$$
\mathcal{T}(C, J)=\mathfrak{d e r} C \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J
$$

( $C$ a composition algebra, $J$ a suitable Jordan algebra.)
First row $\quad \operatorname{dim} C=1, \quad \mathcal{T}(C, J)=\mathfrak{d e r} J$.
Second row $\quad \operatorname{dim} C=2, \quad \mathcal{T}(C, J) \simeq J_{0} \oplus \mathfrak{d e r} J \simeq \mathfrak{s t r}_{0}(J)$.
Third row $\quad \operatorname{dim} C=4$, so $C=Q$ is a quaternion algebra and

$$
\begin{aligned}
\mathcal{T}(C, J) & =\operatorname{ad}_{Q_{0}} \oplus\left(Q_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J \\
& \simeq\left(Q_{0} \otimes J\right) \oplus \mathfrak{d e r} J .
\end{aligned}
$$

(This is Tits version (1962) of the
Tits-Kantor-Koecher construction $\mathcal{T K} \mathcal{K}(J)$ )

Up to now, everything works for arbitrary Jordan algebras in characteristic $\neq 2$, and even for Jordan superalgebras.

Fourth row

## Fourth row

Fourth row $\operatorname{dim} C=8$. If the characteristic is $\neq 2,3$, then $\mathfrak{d e r} C=\mathfrak{g}_{2}$ is simple of type $G_{2}, C_{0}$ is its smallest nontrivial irreducible module, and

$$
\mathcal{T}(C, J)=\mathfrak{g}_{2} \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J
$$

is a $G_{2}$-graded Lie algebra. Essentially, all the $G_{2}$-graded Lie algebras appear in this way [Benkart-Zelmanov 1996].

## Fourth row

Fourth row $\operatorname{dim} C=8$. If the characteristic is $\neq 2,3$, then $\mathfrak{d e r} C=\mathfrak{g}_{2}$ is simple of type $G_{2}, C_{0}$ is its smallest nontrivial irreducible module, and

$$
\mathcal{T}(C, J)=\mathfrak{g}_{2} \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J
$$

is a $G_{2}$-graded Lie algebra. Essentially, all the $G_{2}$-graded Lie algebras appear in this way [Benkart-Zelmanov 1996].
It makes sense to consider Jordan superalgebras, as long as its Grassmann envelope satisfies the Cayley-Hamilton equation of degree 3.

## Fourth row

Fourth row $\operatorname{dim} C=8$. If the characteristic is $\neq 2,3$, then $\mathfrak{d e r} C=\mathfrak{g}_{2}$ is simple of type $G_{2}, C_{0}$ is its smallest nontrivial irreducible module, and

$$
\mathcal{T}(C, J)=\mathfrak{g}_{2} \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J
$$

is a $G_{2}$-graded Lie algebra. Essentially, all the $G_{2}$-graded Lie algebras appear in this way [Benkart-Zelmanov 1996].
It makes sense to consider Jordan superalgebras, as long as its Grassmann envelope satisfies the Cayley-Hamilton equation of degree 3.

- $\mathcal{T}(C, J(V)) \simeq G(3) \quad\left(\operatorname{dim} V=2, V=V_{\overline{1}}\right)$.


## Fourth row

Fourth row $\operatorname{dim} C=8$. If the characteristic is $\neq 2,3$, then $\mathfrak{d e r} C=\mathfrak{g}_{2}$ is simple of type $G_{2}, C_{0}$ is its smallest nontrivial irreducible module, and

$$
\mathcal{T}(C, J)=\mathfrak{g}_{2} \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J
$$

is a $G_{2}$-graded Lie algebra. Essentially, all the $G_{2}$-graded Lie algebras appear in this way [Benkart-Zelmanov 1996].
It makes sense to consider Jordan superalgebras, as long as its Grassmann envelope satisfies the Cayley-Hamilton equation of degree 3.

- $\mathcal{T}(C, J(V)) \simeq G(3) \quad\left(\operatorname{dim} V=2, V=V_{\overline{1}}\right)$.
- $\mathcal{T}\left(C, D_{2}\right) \simeq F(4)$.


## Fourth row

Fourth row $\operatorname{dim} C=8$. If the characteristic is $\neq 2,3$, then $\mathfrak{d e r} C=\mathfrak{g}_{2}$ is simple of type $G_{2}, C_{0}$ is its smallest nontrivial irreducible module, and

$$
\mathcal{T}(C, J)=\mathfrak{g}_{2} \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J
$$

is a $G_{2}$-graded Lie algebra. Essentially, all the $G_{2}$-graded Lie algebras appear in this way [Benkart-Zelmanov 1996].
It makes sense to consider Jordan superalgebras, as long as its Grassmann envelope satisfies the Cayley-Hamilton equation of degree 3.

- $\mathcal{T}(C, J(V)) \simeq G(3) \quad\left(\operatorname{dim} V=2, V=V_{\overline{1}}\right)$.
- $\mathcal{T}\left(C, D_{2}\right) \simeq F(4)$.
- $\mathcal{T}\left(C, K_{10}\right)$ in characteristic 5 !!

This is a new simple modular Lie superalgebra, whose even part is $\mathfrak{s o}_{11}$ and odd part its spin module.

## A supermagic rectangle

| $\mathcal{T}(C, J)$ | $H_{3}(k)$ | $H_{3}(k \times k)$ | $H_{3}\left(\operatorname{Mat}_{2}(k)\right)$ | $H_{3}(C(k))$ | $J(V)$ | $D_{t}$ | $K_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $k$ | $A_{1}$ | $A_{2}$ | $C_{3}$ | $F_{4}$ | $A_{1}$ | $B(0,1)$ | $B(0,1) \oplus B(0,1)$ |
| $k \times k$ | $A_{2}$ | $A_{2} \oplus A_{2}$ | $A_{5}$ | $E_{6}$ | $B(0,1)$ | $A(1,0)$ | $C(3)$ |
| $M_{21}(k)$ | $C_{3}$ | $A_{5}$ | $D_{6}$ | $E_{7}$ | $B(1,1)$ | $D(2,1 ; t)$ | $F(4)$ |
| $C(k)$ | $F_{4}$ | $E_{6}$ | $E_{7}$ | $E_{8}$ | $G(3)$ | $F(4)$ <br> $(t=2)$ | $\mathcal{T}\left(C(k), K_{10}\right)$ <br> $(c h a r 5)$ |

## A supermagic rectangle: the new columns

| $\mathcal{T}(C, J)$ | $J(V)$ | $D_{t}$ | $K_{10}$ |
| :---: | :---: | :---: | :---: |
| $k$ | $A_{1}$ | $B(0,1)$ | $B(0,1) \oplus B(0,1)$ |
| $k \times k$ | $B(0,1)$ | $A(1,0)$ | $C(3)$ |
| Mat $_{2}(k)$ | $B(1,1)$ | $D(2,1 ; t)$ | $F(4)$ |
| $C(k)$ | $G(3)$ | $F(4)$ | $\mathcal{T}\left(C(k), K_{10}\right)$ |
|  |  | $(t=2)$ | $($ char 5) |

Fourth row, characteristic 3

## Fourth row, characteristic 3

If the characteristic is 3 and $\operatorname{dim} C=8$, then $\mathfrak{d e r} C$ is no longer simple, but contains the simple ideal ad $C_{0}$ (a form of $\mathfrak{p s l}_{3}$ ). It makes sense to consider:

$$
\begin{aligned}
\tilde{\mathcal{T}}(C, J) & =\operatorname{ad} C_{0} \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J \\
& \simeq\left(C_{0} \otimes J\right) \oplus \mathfrak{d e r} J .
\end{aligned}
$$

## Fourth row, characteristic 3

If the characteristic is 3 and $\operatorname{dim} C=8$, then $\mathfrak{d e r} C$ is no longer simple, but contains the simple ideal ad $C_{0}$ (a form of $\mathfrak{p s l}_{3}$ ). It makes sense to consider:

$$
\begin{aligned}
\tilde{\mathcal{T}}(C, J) & =\operatorname{ad} C_{0} \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J \\
& \simeq\left(C_{0} \otimes J\right) \oplus \mathfrak{d e r} J .
\end{aligned}
$$

$\tilde{\mathcal{T}}(C, J)$ becomes a Lie algebra if and only if $J$ is a commutative and alternative algebra (these conditions imply the Jordan identity).

## Fourth row, characteristic 3

If the characteristic is 3 and $\operatorname{dim} C=8$, then $\mathfrak{d e r} C$ is no longer simple, but contains the simple ideal ad $C_{0}$ (a form of $\mathfrak{p s l}_{3}$ ). It makes sense to consider:

$$
\begin{aligned}
\tilde{\mathcal{T}}(C, J) & =\operatorname{ad} C_{0} \oplus\left(C_{0} \otimes J_{0}\right) \oplus \mathfrak{d e r} J \\
& \simeq\left(C_{0} \otimes J\right) \oplus \mathfrak{d e r} J .
\end{aligned}
$$

$\tilde{\mathcal{T}}(C, J)$ becomes a Lie algebra if and only if $J$ is a commutative and alternative algebra (these conditions imply the Jordan identity).

The simple commutative alternative algebras are just the fields, so nothing interesting appears here.

Fourth "superrow", characteristic 3

## Fourth "superrow", characteristic 3

But there are simple commutative alternative superalgebras [Shestakov 1997] (characteristic 3):

## Fourth "superrow", characteristic 3

But there are simple commutative alternative superalgebras [Shestakov 1997] (characteristic 3):
(i) fields,

## Fourth "superrow", characteristic 3

But there are simple commutative alternative superalgebras [Shestakov 1997] (characteristic 3):
(i) fields,
(ii) $J(V)$, the Jordan superalgebra of a superform on a two dimensional odd space $V$,

## Fourth "superrow", characteristic 3

But there are simple commutative alternative superalgebras [Shestakov 1997] (characteristic 3):
(i) fields,
(ii) $J(V)$, the Jordan superalgebra of a superform on a two dimensional odd space $V$,
(iii) $B=B(\Gamma, D, 0)=\Gamma \oplus \Gamma u$, where

- $\Gamma$ is a commutative associative algebra,
- $D \in \mathfrak{d e r} \Gamma$ such that $\Gamma$ is $D$-simple,
- $a(b u)=(a b) u=(a u) b, \quad(a u)(b u)=a D(b)-D(a) b$, $\forall a, b \in \Gamma$.


## Fourth "superrow", characteristic 3

Example (Divided powers)

$$
\begin{aligned}
\Gamma=\mathcal{O}(1 ; n) & =\operatorname{span}\left\{t^{(r)}: 0 \leq r \leq 3^{n}-1\right\} \\
t^{(r)} t^{(s)} & =\binom{r+s}{r} t^{(r+s)} \\
D\left(t^{(r)}\right) & =t^{(r-1)}
\end{aligned}
$$

## Bouarroudj-Leites superalgebras

## Bouarroudj-Leites superalgebras

Over an algebraically closed field of characteristic 3:

## Bouarroudj-Leites superalgebras

Over an algebraically closed field of characteristic 3:

- $\tilde{\mathcal{T}}(C(k), J(V))$ is a simple Lie superalgebra specific of characteristic 3 of (super)dimension 10|14,


## Bouarroudj-Leites superalgebras

Over an algebraically closed field of characteristic 3:

- $\tilde{\mathcal{T}}(C(k), J(V))$ is a simple Lie superalgebra specific of characteristic 3 of (super)dimension 10|14,
- $\tilde{\mathcal{T}}(C(k), \mathcal{O}(1, n) \oplus \mathcal{O}(1, n) u)=\operatorname{Bj}(1 ; n \mid 7)$ is a simple Lie superalgebra of (super)dimension $2^{3} \times 3^{n} \mid 2^{3} \times 3^{n}$.


## Bouarroudj-Leites superalgebras

Over an algebraically closed field of characteristic 3:

- $\tilde{\mathcal{T}}(C(k), J(V))$ is a simple Lie superalgebra specific of characteristic 3 of (super)dimension 10|14,
- $\tilde{\mathcal{T}}(C(k), \mathcal{O}(1, n) \oplus \mathcal{O}(1, n) u)=\operatorname{Bj}(1 ; n \mid 7)$ is a simple Lie superalgebra of (super)dimension $2^{3} \times 3^{n} \mid 2^{3} \times 3^{n}$.


## Bouarroudj-Leites superalgebras

Over an algebraically closed field of characteristic 3:

- $\tilde{\mathcal{T}}(C(k), J(V))$ is a simple Lie superalgebra specific of characteristic 3 of (super)dimension 10|14,
- $\tilde{\mathcal{T}}(C(k), \mathcal{O}(1, n) \oplus \mathcal{O}(1, n) u)=\operatorname{Bj}(1 ; n \mid 7)$ is a simple Lie superalgebra of (super)dimension $2^{3} \times 3^{n} \mid 2^{3} \times 3^{n}$.

Both simple Lie superalgebras have been considered in a completely different way by Bouarroudj and Leites (2006).

## Freudenthal-Tits Magic Square

A supermagic rectangle

A supermagic square

Some conclusions

## Composition superalgebras

## Composition superalgebras

## Definition

A superalgebra $C=C_{\overline{0}} \oplus C_{\overline{1}}$, endowed with a regular quadratic superform $q=\left(q_{\overline{0}}, b\right)$, called the norm, is said to be a composition superalgebra in case

$$
\begin{aligned}
& q_{\overline{0}}\left(x_{\overline{0}} y_{\overline{0}}\right)=q_{\overline{0}}\left(x_{\overline{0}}\right) q_{\overline{0}}\left(y_{\overline{0}}\right), \\
& b\left(x_{\overline{0}} y, x_{\overline{0}} z\right)=q_{\overline{0}}\left(x_{\overline{0}}\right) b(y, z)=b\left(y x_{\overline{0}}, z x_{\overline{0}}\right), \\
& b(x y, z t)+(-1)^{|x||y|+|x||z|+|y||z|} b(z y, x t)=(-1)^{|y||z|} b(x, z) b(y, t),
\end{aligned}
$$

The unital composition superalgebras are termed Hurwitz superalgebras.

Composition superalgebras: examples (Shestakov)

## Composition superalgebras: examples (Shestakov)

$$
B(1,2)=k 1 \oplus V,
$$

char $k=3, V$ a two dim'l vector space with a nonzero alternating bilinear form $\langle. \mid$.$\rangle , with$

$$
1 x=x 1=x, \quad u v=\langle u \mid v\rangle 1, \quad q_{\overline{0}}(1)=1, \quad b(u, v)=\langle u \mid v\rangle,
$$

is a Hurwitz superalgebra. (As a superalgebra, this is just our previous $J(V)$.)

Composition superalgebras: examples (Shestakov)

## Composition superalgebras: examples (Shestakov)

$$
B(4,2)=\operatorname{End}_{k}(V) \oplus V,
$$

$k$ and $V$ as before, $\operatorname{End}_{k}(V)$ is equipped with the symplectic involution $f \mapsto \bar{f},(\langle f(u) \mid v\rangle=\langle u \mid \bar{f}(v)\rangle)$, the multiplication is given by:

- the usual multiplication (composition of maps) in $\operatorname{End}_{k}(V)$,
- $v \cdot f=f(v)=\bar{f} \cdot v$ for any $f \in \operatorname{End}_{k}(V)$ and $v \in V$,
- $u \cdot v=\langle. \mid u\rangle v(w \mapsto\langle w \mid u\rangle v) \in \operatorname{End}_{k}(V)$ for any $u, v \in V$, and with quadratic superform

$$
q_{\overline{0}}(f)=\operatorname{det} f, \quad b(u, v)=\langle u \mid v\rangle,
$$

is a Hurwitz superalgebra.

## Composition superalgebras: classification

## Composition superalgebras: classification

## Theorem (E.-Okubo 2002)

Any unital composition superalgebra is either:

- a Hurwitz algebra,
- a $\mathbb{Z}_{2}$-graded Hurwitz algebra in characteristic 2,
- isomorphic to either $B(1,2)$ or $B(4,2)$ in characteristic 3 .


## Composition superalgebras: classification

## Theorem (E.-Okubo 2002)

Any unital composition superalgebra is either:

- a Hurwitz algebra,
- a $\mathbb{Z}_{2}$-graded Hurwitz algebra in characteristic 2,
- isomorphic to either $B(1,2)$ or $B(4,2)$ in characteristic 3.

Hurwitz superalgebras can be plugged into the symmetric construction of Freudenthal-Tits Magic Square $\mathfrak{g}\left(C, C^{\prime}\right)$.

## Supermagic Square (char 3, Cunha-E. 2007)

| $\mathfrak{g}\left(C, C^{\prime}\right)$ | $k$ | $k \times k$ | $\operatorname{Mat}_{2}(k)$ | $C(k)$ | $B(1,2)$ | $B(4,2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $k$ | $A_{1}$ | $\tilde{A}_{2}$ | $C_{3}$ | $F_{4}$ | $6 \mid 8$ | $21 \mid 14$ |
| $k \times k$ |  | $\tilde{A}_{2} \oplus \tilde{A}_{2}$ | $\tilde{A}_{5}$ | $\tilde{E}_{6}$ | $11 \mid 14$ | $35 \mid 20$ |
| $\operatorname{Mat}_{2}(k)$ |  |  | $D_{6}$ | $E_{7}$ | $24 \mid 26$ | $66 \mid 32$ |
| $C(k)$ |  |  |  | $E_{8}$ | $55 \mid 50$ | $133 \mid 56$ |
| $B(1,2)$ |  |  |  |  | $21 \mid 16$ | $36 \mid 40$ |
| $B(4,2)$ |  |  |  |  |  | $78 \mid 64$ |

## Supermagic Square (char 3, Cunha-E. 2007)

| $\mathfrak{g}\left(C, C^{\prime}\right)$ | $k$ | $k \times k$ | Mat $_{2}(k)$ | $C(k)$ | $B(1,2)$ | $B(4,2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $k$ | $A_{1}$ | $\tilde{A}_{2}$ | $C_{3}$ | $F_{4}$ | $6 \mid 8$ | $21 \mid 14$ |
| $k \times k$ |  | $\tilde{A}_{2} \oplus \tilde{A}_{2}$ | $\tilde{A}_{5}$ | $\tilde{E}_{6}$ | $11 \mid 14$ | $35 \mid 20$ |
| $\operatorname{Mat}_{2}(k)$ |  |  | $D_{6}$ | $E_{7}$ | $24 \mid 26$ | $66 \mid 32$ |
| $C(k)$ |  |  |  | $E_{8}$ | $55 \mid 50$ | $133 \mid 56$ |
| $B(1,2)$ |  |  |  |  | $21 \mid 16$ | $36 \mid 40$ |
| $B(4,2)$ |  |  |  |  |  | $78 \mid 64$ |

Notation: $\mathfrak{g}(n, m)$ will denote the superalgebra $\mathfrak{g}\left(C, C^{\prime}\right)$, with $\operatorname{dim} C=n, \operatorname{dim} C^{\prime}=m$.

## Lie superalgebras in the Supermagic Square

|  | $B(1,2)$ | $B(4,2)$ |
| :---: | :---: | :---: |
| $k$ | $\mathfrak{p s l}_{2,2}$ | $\mathfrak{s p}_{6} \oplus(14)$ |
| $k \times k$ | $\left(\mathfrak{s l}_{2} \oplus \mathfrak{p g l}_{3}\right) \oplus\left((2) \otimes \mathfrak{p s l}_{3}\right)$ | $\mathfrak{p g l}_{6} \oplus(20)$ |
| $M_{2}(k)$ | $\left(\mathfrak{s l}_{2} \oplus \mathfrak{s p}_{6}\right) \oplus((2) \otimes(13))$ | $\mathfrak{s o}_{12} \oplus$ spin $_{12}$ |
| $C(k)$ | $\left(\mathfrak{s l}_{2} \oplus \mathfrak{f}_{4}\right) \oplus((2) \otimes(25))$ | $\mathfrak{e}_{7} \oplus(56)$ |
| $B(1,2)$ | $\mathfrak{s o}_{7} \oplus 2$ spin $_{7}$ | $\mathfrak{s p}_{8} \oplus(40)$ |
| $B(4,2)$ | $\mathfrak{s p}_{8} \oplus(40)$ | $\mathfrak{s o}_{13} \oplus$ spin $_{13}$ |

Lie superalgebras in the Supermagic Square

## Lie superalgebras in the Supermagic Square

All these Lie superalgebras are simple, with the exception of $\mathfrak{g}(2,3)$ and $\mathfrak{g}(2,6)$, both of which contain a codimension one simple ideal.

## Lie superalgebras in the Supermagic Square

All these Lie superalgebras are simple, with the exception of $\mathfrak{g}(2,3)$ and $\mathfrak{g}(2,6)$, both of which contain a codimension one simple ideal.

Only $\mathfrak{g}(1,3) \simeq \mathfrak{p s l}_{2,2}$ has a counterpart in Kac's classification in characteristic 0 . The other Lie superalgebras in the Supermagic Square, or their derived algebras, are new simple Lie superalgebras, specific of characteristic 3.

## Lie superalgebras in the Supermagic Square

All these Lie superalgebras are simple, with the exception of $\mathfrak{g}(2,3)$ and $\mathfrak{g}(2,6)$, both of which contain a codimension one simple ideal.

Only $\mathfrak{g}(1,3) \simeq \mathfrak{p s l}_{2,2}$ has a counterpart in Kac's classification in characteristic 0 . The other Lie superalgebras in the Supermagic Square, or their derived algebras, are new simple Lie superalgebras, specific of characteristic 3.

The simple Lie superalgebra $\mathfrak{g}(2,3)^{\prime}=[\mathfrak{g}(2,3), \mathfrak{g}(2,3)]$ is isomorphic to our previous $\tilde{\mathcal{T}}(C(k), J(V))$.

The Supermagic Square and Jordan algebras

## The Supermagic Square and Jordan algebras

|  | $k$ | $k \times k$ | $\operatorname{Mat}_{2}(k)$ | $C(k)$ |
| :---: | :---: | :---: | :---: | :---: |
| $B(1,2)$ | $\mathfrak{p s l}_{2,2}$ | $\left(\mathfrak{s l}_{2} \oplus \mathfrak{p g l}_{3}\right) \oplus\left((2) \otimes \mathfrak{p s l}_{3}\right)$ | $\left(\mathfrak{s l}_{2} \oplus \mathfrak{s p}_{6}\right) \oplus((2) \otimes(13))$ | $\left(\mathfrak{s l}_{2} \oplus \mathfrak{f}_{4}\right) \oplus((2) \otimes(25))$ |
| $B(4,2)$ | $\mathfrak{s p}_{6} \oplus(14)$ | $\mathfrak{p g l}_{6} \oplus(20)$ | $\mathfrak{s o}_{12} \oplus \operatorname{spin}_{12}$ | $\mathfrak{e}_{7} \oplus(56)$ |

## The Supermagic Square and Jordan algebras

|  | $k$ | $k \times k$ | $M^{2} t_{2}(k)$ | $C(k)$ |
| :---: | :---: | :---: | :---: | :---: |
| $B(1,2)$ | $\mathfrak{p s l}_{2,2}$ | $\left(\mathfrak{s l}_{2} \oplus \mathfrak{p g l}_{3}\right) \oplus\left((2) \otimes \mathfrak{p s l}_{3}\right)$ | $\left(\mathfrak{s l}_{2} \oplus \mathfrak{s p}_{6}\right) \oplus((2) \otimes(13))$ | $\left(\mathfrak{s l}_{2} \oplus \mathfrak{f}_{4}\right) \oplus((2) \otimes(25))$ |
| $B(4,2)$ | $\mathfrak{S p}_{6} \oplus(14)$ | $\mathfrak{p g l}_{6} \oplus(20)$ | $\mathfrak{s o}_{12} \oplus \operatorname{spin}_{12}$ | $\mathfrak{e}_{7} \oplus(56)$ |

$$
\begin{aligned}
& \mathfrak{g}(3, r)=\left(\mathfrak{s l}_{2} \oplus \mathfrak{d e r} J\right) \oplus((2) \otimes \hat{\jmath}), \\
& r=1,2,4,8, \quad \hat{\jmath}=J_{0} / k 1, \quad J=H_{3}(C) .
\end{aligned}
$$

## The Supermagic Square and Jordan algebras

|  | $k$ | $k \times k$ | $M^{2} t_{2}(k)$ | $C(k)$ |
| :---: | :---: | :---: | :---: | :---: |
| $B(1,2)$ | $\mathfrak{p s l}_{2,2}$ | $\left(\mathfrak{s l}_{2} \oplus \mathfrak{p g l}_{3}\right) \oplus\left((2) \otimes \mathfrak{p s l}_{3}\right)$ | $\left(\mathfrak{s l}_{2} \oplus \mathfrak{s p}_{6}\right) \oplus((2) \otimes(13))$ | $\left(\mathfrak{s l}_{2} \oplus \mathfrak{f}_{4}\right) \oplus((2) \otimes(25))$ |
| $B(4,2)$ | $\mathfrak{s p}_{6} \oplus(14)$ | $\mathfrak{p g l}_{6} \oplus(20)$ | $\mathfrak{s o}_{12} \oplus \operatorname{spin}_{12}$ | $\mathfrak{e}_{7} \oplus(56)$ |

$$
\begin{aligned}
& \mathfrak{g}(3, r)=\left(\mathfrak{s l}_{2} \oplus \mathfrak{d e r} J\right) \oplus((2) \otimes \hat{\jmath}), \\
& r=1,2,4,8, \quad \hat{\jmath}=J_{0} / k 1, \quad J=H_{3}(C) .
\end{aligned}
$$

$\mathfrak{g}(6, r)=(\mathfrak{d e r} T) \oplus T$,
$r=1,2,4,8, \quad T=\left(\begin{array}{ll}k & J \\ J & k\end{array}\right), \quad J=H_{3}(C)$.

The Supermagic Square and Jordan superalgebras

|  | $B(1,2)$ | $B(4,2)$ |
| :---: | :---: | :---: |
| $k$ | $\mathfrak{d e r}\left(H_{3}(B(1,2))\right.$ | $\mathfrak{d e r}\left(H_{3}(B(4,2))\right.$ |
| $k \times k$ | $\mathfrak{p s t r}\left(H_{3}(B(1,2))\right.$ | $\mathfrak{p s t r}\left(H_{3}(B(4,2))\right.$ |
| Mat $_{2}(k)$ | $\mathcal{T} \mathcal{K} \mathcal{K}\left(H_{3}(B(1,2))\right.$ | $\mathcal{T K K} \mathcal{K}\left(H_{3}(B(4,2))\right.$ |
| $C(k)$ |  |  |
| $B(1,2)$ | $\mathcal{T K K}\left(K_{9}\right)$ |  |
| $B(4,2)$ |  |  |

## Simple modular Lie superalgebras with a Cartan matrix

## Simple modular Lie superalgebras with a Cartan matrix

The finite dimensional modular Lie superalgebras with indecomposable symmetrizable Cartan matrices (or contragredient Lie superalgebras) over algebraically closed fields have been classified by Bouarroudj, Grozman and Leites (2009), under some extra technical hypotheses.

## Simple modular Lie superalgebras with a Cartan matrix

The finite dimensional modular Lie superalgebras with indecomposable symmetrizable Cartan matrices (or contragredient Lie superalgebras) over algebraically closed fields have been classified by Bouarroudj, Grozman and Leites (2009), under some extra technical hypotheses.

For characteristic $p \geq 3$, apart from the Lie superalgebras obtained as the analogues of the Lie superalgebras in the classification in characteristic 0 , by reducing the Cartan matrices modulo $p$, there are only the following exceptions:

## Simple modular Lie superalgebras with a Cartan matrix

## Simple modular Lie superalgebras with a Cartan matrix

1. Two exceptions in characteristic $5: \mathfrak{b r}(2 ; 5)$ and $\mathfrak{e l}(5 ; 5)$. (Dimensions 10|12 and 55|32.)

## Simple modular Lie superalgebras with a Cartan matrix

1. Two exceptions in characteristic $5: \mathfrak{b r}(2 ; 5)$ and $\mathfrak{e l}(5 ; 5)$. (Dimensions 10|12 and 55|32.)
2. The family of exceptions given by the Lie superalgebras in the Supermagic Square in characteristic 3.

## Simple modular Lie superalgebras with a Cartan matrix

1. Two exceptions in characteristic $5: \mathfrak{b r}(2 ; 5)$ and $\mathfrak{e l}(5 ; 5)$. (Dimensions 10|12 and 55|32.)
2. The family of exceptions given by the Lie superalgebras in the Supermagic Square in characteristic 3.
3. Another two exceptions in characteristic 3, similar to the ones in characteristic $5: \mathfrak{b r}(2 ; 3)$ and $\mathfrak{e l}(5 ; 3)$. (Dimensions $10 \mid 8$ and 39|32.)

## Simple modular Lie superalgebras with a Cartan matrix

1. Two exceptions in characteristic $5: \mathfrak{b r}(2 ; 5)$ and $\mathfrak{e l}(5 ; 5)$. (Dimensions 10|12 and 55|32.)
2. The family of exceptions given by the Lie superalgebras in the Supermagic Square in characteristic 3.
3. Another two exceptions in characteristic 3, similar to the ones in characteristic $5: \mathfrak{b r}(2 ; 3)$ and $\mathfrak{e l}(5 ; 3)$. (Dimensions $10 \mid 8$ and 39|32.)

## Simple modular Lie superalgebras with a Cartan matrix

1. Two exceptions in characteristic $5: \mathfrak{b r}(2 ; 5)$ and $\mathfrak{e l}(5 ; 5)$. (Dimensions 10|12 and 55|32.)
2. The family of exceptions given by the Lie superalgebras in the Supermagic Square in characteristic 3.
3. Another two exceptions in characteristic 3, similar to the ones in characteristic $5: \mathfrak{b r}(2 ; 3)$ and $\mathfrak{e l}(5 ; 3)$. (Dimensions $10 \mid 8$ and 39|32.)

The superalgebra $\mathfrak{b r}(2 ; 3)$ appeared first related to an eight dimensional symplectic triple system (E. 2006).

## Simple modular Lie superalgebras with a Cartan matrix

1. Two exceptions in characteristic $5: \mathfrak{b r}(2 ; 5)$ and $\mathfrak{e l}(5 ; 5)$. (Dimensions 10|12 and 55|32.)
2. The family of exceptions given by the Lie superalgebras in the Supermagic Square in characteristic 3.
3. Another two exceptions in characteristic 3, similar to the ones in characteristic $5: \mathfrak{b r}(2 ; 3)$ and $\mathfrak{e l}(5 ; 3)$. (Dimensions $10 \mid 8$ and 39|32.)

The superalgebra $\mathfrak{b r}(2 ; 3)$ appeared first related to an eight dimensional symplectic triple system (E. 2006).

The superalgebra $\mathfrak{e l}(5 ; 5)$ is the Lie superalgebra $\mathcal{T}\left(C(k), K_{10}\right)$ considered previously.
$\mathfrak{e l}(5 ; 3)$

## $\mathfrak{e l}(5 ; 3)$

The superalgebra $\mathfrak{e l}(5 ; 3)$ lives (as a natural maximal subalgebra) in the Lie superalgebra $\mathfrak{g}(3,8)$ of the Supermagic Square as follows:
$-\mathfrak{e l}(5 ; 3)_{\overline{0}}=\mathfrak{s l}_{2} \oplus \mathfrak{s o}_{9} \leq \mathfrak{s l}_{2} \oplus \mathfrak{f}_{4}=\mathfrak{g}(3,8)_{\overline{0}}$,

$$
\left(\mathfrak{f}_{4}=\mathfrak{d e r}(J), \quad J=H_{3}(C(k))\right)
$$

## $\mathfrak{e l}(5 ; 3)$

The superalgebra $\mathfrak{e l}(5 ; 3)$ lives (as a natural maximal subalgebra) in the Lie superalgebra $\mathfrak{g}(3,8)$ of the Supermagic Square as follows:
$-\mathfrak{e l}(5 ; 3)_{\overline{0}}=\mathfrak{s l}_{2} \oplus \mathfrak{s o}_{9} \leq \mathfrak{s l}_{2} \oplus \mathfrak{f}_{4}=\mathfrak{g}(3,8)_{\overline{0}}$,

$$
\left(\mathfrak{f}_{4}=\mathfrak{d e r}(J), \quad J=H_{3}(C(k))\right)
$$

- $\mathfrak{e l}(5 ; 3)_{\overline{1}}=(2) \otimes(C(k) \oplus C(k)) \leq(2) \otimes \hat{\jmath}=\mathfrak{g}(3,8)_{\overline{1}}$,
$\left(\hat{\jmath}=J_{0} / k 1\right.$ contains three copies of $C(k)$ in the off-diagonal entries.)


## Freudenthal-Tits Magic Square

A supermagic rectangle

A supermagic square

Some conclusions

## Some conclusions

## Some conclusions

Freudenthal-Tits Magic Square can be extended in several ways to include interesting superalgebras:

## Some conclusions

Freudenthal-Tits Magic Square can be extended in several ways to include interesting superalgebras:
char. $\neq 2,3: \quad$ By extending Tits construction with the use of "degree three" Jordan superalgebras.
There appear the exceptional Lie superalgebras $D(2,1 ; t), G(3)$ and $F(4)$ in Kac's classification.

## Some conclusions

Freudenthal-Tits Magic Square can be extended in several ways to include interesting superalgebras:
char. $\neq 2,3: \quad$ By extending Tits construction with the use of "degree three" Jordan superalgebras.
There appear the exceptional Lie superalgebras $D(2,1 ; t), G(3)$ and $F(4)$ in Kac's classification.
char. 5: In characteristic 5 one can add the new simple Lie superalgebra (without counterpart in Kac's classification) $\mathfrak{e l}(5 ; 5)=\mathcal{T}\left(C(k), K_{10}\right)$.

## Some conclusions

## Some conclusions

char. 3:

- By using a symmetric construction in terms of two Hurwitz algebras, and extending it (only in characteristic 3) with the use of composition superalgebras.
Ten new simple Lie superalgebras are obtained:

$$
\begin{aligned}
& \mathfrak{g}(r, 3)^{\prime}(r=2,4,8), \mathfrak{g}(r, 6)^{\prime}(r=1,2,4,8), \\
& \mathfrak{g}(3,3), \mathfrak{g}(3,6) \text { and } \mathfrak{g}(6,6) \text {. }
\end{aligned}
$$

## Some conclusions

char. 3:

- By using a symmetric construction in terms of two Hurwitz algebras, and extending it (only in characteristic 3) with the use of composition superalgebras.
Ten new simple Lie superalgebras are obtained:

$$
\begin{aligned}
& \mathfrak{g}(r, 3)^{\prime}(r=2,4,8), \mathfrak{g}(r, 6)^{\prime}(r=1,2,4,8), \\
& \mathfrak{g}(3,3), \mathfrak{g}(3,6) \text { and } \mathfrak{g}(6,6)
\end{aligned}
$$

- The new simple Lie superalgebra $\mathfrak{e l}(5 ; 3)$ appears as a maximal subalgebra of $\mathfrak{g}(8,3)$.


## Some conclusions

char. 3:

- By using a symmetric construction in terms of two Hurwitz algebras, and extending it (only in characteristic 3) with the use of composition superalgebras.
Ten new simple Lie superalgebras are obtained:

$$
\begin{aligned}
& \mathfrak{g}(r, 3)^{\prime}(r=2,4,8), \mathfrak{g}(r, 6)^{\prime}(r=1,2,4,8), \\
& \mathfrak{g}(3,3), \mathfrak{g}(3,6) \text { and } \mathfrak{g}(6,6) .
\end{aligned}
$$

- The new simple Lie superalgebra $\mathfrak{e l}(5 ; 3)$ appears as a maximal subalgebra of $\mathfrak{g}(8,3)$.
- The new simple Lie superalgebra

$$
\tilde{\mathcal{T}}(C(k), \mathcal{O}(1, n) \oplus \mathcal{O}(1, n) u)=\operatorname{Bj}(1 ; n \mid 7)
$$ appears by 'adjusting' the fourth row of Tits construction to characteristic 3.

## Some conclusions

char. 3:

- By using a symmetric construction in terms of two Hurwitz algebras, and extending it (only in characteristic 3) with the use of composition superalgebras.
Ten new simple Lie superalgebras are obtained:

$$
\begin{aligned}
& \mathfrak{g}(r, 3)^{\prime}(r=2,4,8), \mathfrak{g}(r, 6)^{\prime}(r=1,2,4,8), \\
& \mathfrak{g}(3,3), \mathfrak{g}(3,6) \text { and } \mathfrak{g}(6,6)
\end{aligned}
$$

- The new simple Lie superalgebra $\mathfrak{e l}(5 ; 3)$ appears as a maximal subalgebra of $\mathfrak{g}(8,3)$.
- The new simple Lie superalgebra

$$
\tilde{\mathcal{T}}(C(k), \mathcal{O}(1, n) \oplus \mathcal{O}(1, n) u)=\operatorname{Bj}(1 ; n \mid 7)
$$ appears by 'adjusting' the fourth row of Tits construction to characteristic 3.

